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The energy of a graph is defined as the sum of the absolute values of all the eigenvalues
of the graph. Gutman (Acyclic conjugated molecules, trees and their energies, J. Math.
Chem. 1 (1987) 123–143) proposes two conjectures about the minimum of the energy of
conjugated trees (trees with a perfect matching), which are verified by Zhang and Li (On
acyclic conjugated molecules with minimal energies, Discrete Appl. Math. 92 (1999) 71–
84). This paper focuses on the trees of conjugated hydrocarbons and gives roughly the first
n/2 trees in the class in the increasing order of their energies.

1. Introduction

Chemists have known that the experimental heats of formation of conjugated
hydrocarbons are closely related to the total π-electron energy. And the calculation of
the total energy of all π-electrons in a conjugated hydrocarbon can be reduced (within
the framework of the HMO approximation) [4] to

E(T ) = |λ1|+ |λ2|+ · · ·+ |λn|,

where λi are the eigenvalues of the corresponding graph. For an acyclic (or tree) graph
T this energy is also expressible in terms of the Coulson integral formula [4] as

E(T ) =
2
π

∫ +∞

0
x−2 ln

[
1 +

n/2∑
k=1

m(T , k)x2k

]
dx,

where m(T , k) is the number of k-matchings of T . The fact that E(T ) is a strictly
monotonically increasing function of all matching numbers m(T , k), k = 0, 1,
. . . , bn/2c, provides us with a way of comparing the energies of trees. Thus a quasi-
ordering is introduced: if for two graphs G1 and G2, m(G1, k) 6 m(G2, k) holds for
all k > 0, we say G1 is m-smaller than G2, written as G1 � G2 or G2 � G1. G1 and
G2 are m-equivalent, written as G1 ∼ G2, if G1 � G2 and G2 � G1. If G1 � G2

but they are not m-equivalent, then G1 ≺ G2. If neither G1 � G2 nor G2 � G1, then
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Figure 1. Fn and Cm.

G1 and G2 are said to be m-incomparable. By the monotonicity of E(T ), if T1 � T2
for two trees T1 and T2, then E(T1) 6 E(T2), and E(T1) < E(T2) if T1 ≺ T2. For
the study of a quasiordering a number of results have been reached [2,5–9]. A typical
one [5], which we frequently use, is that if we denote by G ∪ H the graph whose
components are G and H , then

Pl �P2 ∪ Pl−2 � P4 ∪ Pl−4 � · · · � P2k ∪ Pl−2k � P2k+1 ∪ Pl−2k−1

�P2k−1 ∪ Pl−2k+1 � · · · � P3 ∪ Pl−3 � P1 ∪ Pl−1,

where Pi is the path with i vertices and l = 4k + r, 0 6 r 6 3.
For the case of minimal energy, Gutman has put forward the following two

conjectures [3].

Conjecture 1. Among trees of n vertices which have a perfect matching, E(T ) is
minimal for the graph Fn, where Fn is obtained by adding a pendant edge to each
vertex of the star K1,n/2−1.

Conjecture 2. Among trees with n = 2m vertices which have a perfect matching and
whose vertex degrees do not exceed 3, E(T ) is minimal for the comb Cm obtained by
adding a pendant edge to each vertex of the path Pm (see figure 1).

He has also checked all the trees with a perfect matching less than sixteen vertices.
In [10], Zhang and the present author have verified the above two conjectures us-

ing the quasiordering relation ≺. And we went further to give the second smallest tree
and show that the third smallest is between two trees, which ≺ fails to compare. That
tells us that we have reached a blind alley through the quasiordering relation ≺ to order
the trees in terms of their energies in the class of trees with a perfect matching. It is cu-
rious enough, however, that in this paper a fairly long series is determined in the order-
ing of trees with a perfect matching whose vertex degrees do not exceed 3. And the se-
ries is still open ended in the searching. The proofs are given in the following sections.

2. Preliminaries

Denote by Φn the class of trees with n vertices which have a perfect matching
and by Ψn the subclass of Φn whose vertex degrees do not exceed 3. Let ∆(G) be
the largest vertex degree of the graph G.
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Figure 2. Dm and D̂m.

Because the perfect matching of a tree T is unique, we denote it by M (T ).
Let m = |M (T )|, Q(T ) = L(T ) −M (T ), where L(T ) is the edge set of T . De-
note by T̂ the graph induced by Q(T ), that is, T̂ = T − M (T ) − S, where S is
the set of singletons in T − M (T ). We call T̂ the capped graph of T and T an
original or uncapped graph of T̂ . For example, figure 2 shows the capped graph
of Dm.

Each k-matching Ω of T is partitioned into two parts: Ω = R ∪ S, where
S ⊆ M (T ) and R is a matching in T̂ . On the other hand, any i-matching R of T̂
and k − i edges S of M (T ) not incident with R form a k-matching Ω of T with
partition Ω = R ∪ S. From now on, when we say a k-matching of T including a
certain s-matching R of T̂ , it is in such a sense. This is our fundamental principle of
counting the k-matchings of T .

For convenience we extend the meaning of m(G, k) by defining that m(G, k) = 0,
if k < 0 and m(G, 0) = 1. So for all integers k ∈ Z, m(G, k) is well-defined.

In Ψn, the capped graph T̂ of any tree T is unique and composed of disjoint
paths with altogether n/2− 1 edges:

T̂ = Pi1 ∪ Pi2 ∪ · · · ∪ Pir , iα > 1, α = 1, 2, . . . , r,

where r = c(T̂ ) is the number of connected components. And there is a unique set
E of M (T ), called the set of linking edges, such that T̂ + E forms a tree of the
same vertices as T̂ (equivalently, T̂ is incident with both end vertices of any edge e
in E).

Conversely, for any graph U of disjoint paths of length greater than 0 with
altogether m − 1 edges and a set E of disjoint edges such that U + E forms a tree
of the same vertices as U , there is a unique tree T in Ψn, formed by the principle of
attaching a pendant edge to each vertex of U + E except for the end vertices of the
edges of E. Then T̂ = U and E is the set of linking edges. This process is shown
in figure 3. The unique tree T is denoted by T = T (U ,E) and called the uncapped
graph of U with respect to E. Hence suitable T̂ and E together are in one-to-one
correspondence with T .

Let R be a matching of T̂ , and t(R) the number of edges e in M (T ) such that
both end vertices of each such e are incident with R in T . Denote by βt(T̂ , s) the
number of s-matchings of T̂ incident with both end vertices of exactly t edges of
M (T ), t > 0, where we define β0(T̂ , 0) = 1, βt(T̂ , 0) = 0 if t > 0, βt(T̂ , s) = 0 if
s < 0, t > 0.
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Figure 3. An example of the determination of T (U ,E) by U , where r = 5 and E = {e1, e2, e3, e4}.

Lemma 1.

m(T , k) =
∑

06s6k
R is an s-matching of T̂

(
m− 2s + t(R)

k − s

)
, k ∈ Z, (1)

=
∑

06s6k

∑
06t6m

βt
(
T̂ , s

)(m− 2s + t

k − s

)
, k ∈ Z, (2)

where a 0-matching is ∅ and t(∅) = 0.

Proof. A k-matching Ω of T can be partitioned into two parts: Ω = R ∪ S, with
R ⊆ T̂ and S ⊆M (T ). The number of such k-matchings Ω with a fixed R is(

m− 2s+ t(R)
k − s

)
,

which gives the first part of the equations. The second part is a straightforward
derivation of the first. �

Because
m∑
t=0

βt
(
T̂ , s

)
= m

(
T̂ , s

)
, s ∈ Z, (3)

we have

Lemma 2. If m(T̂1, s) > m(T̂2, s) and βt(T̂1, s) > βt(T̂2, s) for t > 0, then T1 � T2.
Also, T1 � T2 if one of the previous inequalities is sharp.

Proof. By lemma 1,

m(T1, k)−m(T2, k) =
∑

06s6k

∑
06t6m

[
βt
(
T̂1, s

)
− βt

(
T̂2, s

)](m− 2s+ t

k − s

)
>
∑

06s6k

∑
06t6m

[
βt
(
T̂1, s

)
− βt

(
T̂2, s

)](m− 2s

k − s

)
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=
∑

06s6k

[
m
(
T̂1, s

)
−m

(
T̂2, s

)](m− 2s

k − s

)
> 0. �

Now we drop some edges E′ from E and concatenate some paths in U into one
by coalescing suitable pairs of their end vertices (by “suitable” we mean avoiding the
end vertices of edges in E−E′) such that the graph U∗ of the resulting disjoint paths
together with the new linking edges E − E′ remains a tree. The process is shown in
figure 4, where r = 5, E = {e1, e2, e3, e4}, E′ = {e1, e3} and E −E′ = {e2, e4}. In
the figure, we have concatenated Pi2 , Pi5 and Pi1 , respectively, at their end vertices
but avoiding the end vertices of e2 and e4. We call the process a concatenation of U
and the resulting graph of disjoint paths U∗ is called a concatenated graph from U
with respect to E −E′. (In the figure, U∗ = P3 ∪ P3 ∪ P8.) We have

Lemma 3. T (U ,E) � T (U∗,E −E′).

Proof. We denote T (U ,E) by T and T (U∗,E−E′) by T ∗. We note that the capped
graphs of T and T ∗ are U and U∗, respectively, and U and U∗ have the same edges.
If two edges are incident in U , so are they in U∗. As a result, any s-matching R of
U∗ is also an s-matching of U . Therefore U � U∗, since there is a 2-matching of U
which is a not a matching of U∗ at all after the concatenation. In addition, if both
end vertices of an edge e of the unique perfect matching M (T ) = M (T ∗) is incident
with two edges of a matching R of U∗, so is it with the same two edges of R of U
on the grounds that the concatenation does not change the status of the end vertices
of E − E′, to which e belongs. (The real difference between M (T ) and M (T ∗) is
that none of the edges in E′ is a pendant edge in T , while any of the edges in E′ is
in T ∗.) Consequently, t(R) in T ∗ is no larger than t(R) in T . Finally, using the first
part of the equations in lemma 1, we get T ∗ ≺ T . �

Next we show some orderings within the class of graphs whose capped graphs
are composed of just two paths.

Figure 4. An example of the process of concatenation of the graph U , where r = 5, E = {e1, e2, e3, e4},
and E′ = {e1, e3}.
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3. Trees of 2-component capped graphs

Let P0 = ∅, Jca = Pa ∪ Pb, Pa = u1 · · · ua, Pb = v1 · · · vb, a + b = c > 0,
0 6 a 6 bc/2c = q. Define m(Jc−1, k) = m(P−1 ∪ Pc+1, k) = 0, k ∈ Z. Denote
T ci,j(a) = T (Jca,uivj) (we simply use the symbol uivj for {uivj} where there is no
confusion), 2 6 a 6 bc/2c, 1 6 i 6 b(a + 1)/2c, 1 6 j 6 b(b+ 1)/2c, and i ≡ p(q)
instead of “i equals p modulo q”.

Theorem 4.

(1) Jc1 ≺ Jc3 ≺ · · · ≺ · · · ≺ · · · ≺ Jc4 ≺ Jc2 ≺ Jc0 .

(2) T c1,1(1) ≺ T c1,1(3) ≺ · · · ≺ · · · ≺ · · · ≺ T c1,1(4) ≺ T c1,1(2), where T c1,1(1) =

T (Jc1 ,u1v1) = T (Jc−1
0 , ∅) is also denoted by Cc−1.

Explanation: the series of (2) in this theorem is of the form T c1,1(i) which is
formed by omitting the ith and the (i + 1)th teeth of the comb Cm+1 with i ranging
from 1 to b(1/2)(m + 1)c. It is partitioned accordingly as whether i is odd or even.
The odd part goes increasingly with i and the even part follows the odd part going in
the inverse order of i. The series of (1) in this theorem is ordered in the same way,
that is, accordingly as whether i, the subscript of Jci ranging from 0 to bc/2c, is odd
or even. The odd part goes increasingly with i and the even part follows the odd part
going in the inverse order of i.

Before proving this theorem, we need two lemmas.

Lemma 5. Let e = uv be an edge of a graph G, then

m(G, k) = m(G− e, k) +m(G− u− v, k − 1), k ∈ Z. (4)

The proof of this lemma can be found in many graph theory textbooks.

Lemma 6. Let G and H be two graphs. Denote by G(u)H(v) the graph obtained
by coalescing the vertex u of G and the vertex v of H . Suppose u and v are not
singletons. Then

m(G ∪H , k) = m
(
G(u)H(v), k

)
+

∑
uui∈G,
vvj∈H

m
(
(G− u− ui) ∪ (H − v − vj), k − 2

)
,

k ∈ Z. (5)

Proof. The k-matchings of G∪H are partitioned into two parts: those incident with
both u and v, and those not, whose numbers are just the two terms on the right hand
in the above equation. �
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Proof of theorem 4. By the above two lemmas,

m
(
Jci , s

)
−m

(
Jci−2, s

)
= m(Pi ∪ Pc−i, s)−m(Pi−2 ∪ Pc−i+2, s)

lemma 6
= m(Pi−2 ∪ Pc−i−2, s− 2)−m(Pi−4 ∪ Pc−i, s− 2)

lemma 6
= · · · lemma 6

=

lemma 6
=

{
m(P2 ∪ Pc−2i+2, s− i+ 2)−m(P0 ∪ Pc−2i+4, s− i+ 2), i ≡ 0(2),

m(P3 ∪ Pc−2i+3, s− i+ 3)−m(P1 ∪ Pc−2i+5, s− i+ 3), i ≡ 1(2),

lemmas 5, 6
=


−m(P1 ∪ Pc−2i+1, s− i+ 1) = −m(Pc−2i+1, s− i+ 1) 6 0,
i ≡ 0(2),

m(P1 ∪ Pc−2i+1, s− i+ 1) = m(Pc−2i+1, s− i+ 1) > 0,
i ≡ 1(2),

(6)

1 6 i 6 q = bc/2c, s ∈ Z. When s = i − 1, the last inequalities in (6) are sharp.
And likewise,

m
(
Jcq , s

)
−m

(
Jcq−1, s

)
= m(Pq ∪ Pc−q, s)−m(Pq−1 ∪ Pc−q+1, s)

lemma 6
= · · · lemma 6

=

lemma 6
=

{
m(P2 ∪ Pc−2q+2, s− q + 2)−m(P1 ∪ Pc−2q+3, s− q + 2)

m(P1 ∪ Pc−2q+1, s− q + 1)−m(P0 ∪ Pc−2q+2, s− q + 1)

lemmas 5, 6
=

{
m(Pc−2q, s− q) > 0, q ≡ 0(2),

s ∈ Z.−m(Pc−2q, s− q) 6 0, q ≡ 1(2),
(7)

When s = q, these inequalities are sharp. Thus (1) holds.
To show (2), it suffices to show, by lemma 2, that

β1
(
T̂ c1,1(i), s

)
− β1

(
T̂ c1,1(i− 2), s

){6 0, i ≡ 0(2),
3 6 i 6 q, s ∈ Z,> 0, i ≡ 1(2),

and
β1
(
T̂ c1,1(q), s

)
− β1

(
T̂ c1,1(q − 1), s

){> 0, q ≡ 0(2),
s ∈ Z,6 0, q ≡ 1(2),

β1(Cc−1, s) = 0. (This is evident.)

Now
β1
(
T̂ c1,1(i), s

)
− β1

(
T̂ c1,1(i− 2), s

)
= m(Pi−2 ∪ Pc−i−2, s− 2)−m(Pi−4 ∪ Pc−i, s− 2),

β1
(
T̂ c1,1(q), s

)
− β1

(
T̂ c1,1(q − 1), s

)
= m(Pq−2 ∪ Pc−q−2, s− 2)−m(Pq−3 ∪ Pc−q−1, s− 2).

Applying (6) and (7), we obtain the desired result. �

Theorem 7. T c1,1(2) ≺ T c1,3(3), c > 8.
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Proof. We count the difference between the numbers of the k-matchings of the two
graphs:

m
(
T c1,3(3), k

)
−m

(
T c1,1(2), k

)
= m

(
, k

)
−m

(
, k

)
lemma 5

=
[
m
( )

∪ Cc−6, k
)

+m
(

∪ C2 ∪ Cc−7, k − 1
)]

−
[
m
(

∪Cc−6, k
)

+m
(

∪ Cc−7, k − 1
)]

lemma 5
=

[
m(C3 ∪ C2 ∪Cc−6, k) +m

(
∪ C1 ∪Cc−6, k − 1

)]
+
[
m(C2 ∪C2 ∪ Cc−7, k − 1) +m(C2 ∪ C1 ∪Cc−7, k − 2)

]
−
[
m(P6 ∪ C2 ∪ Cc−6, k) +m(C2 ∪ C1 ∪ Cc−6, k − 1)

]
−
[
m(C2 ∪C2 ∪ Cc−7, k − 1) +m(P3 ∪C1 ∪ Cc−7, k − 2)

]
lemma 5

=
[
m(P5 ∪ C2 ∪ Cc−6, k) +m(C1 ∪ C1 ∪ C2 ∪Cc−6, k − 1)

]
+
[
m(C2 ∪C1 ∪ Cc−6, k − 1) +m(C1 ∪ C1 ∪Cc−6, k − 2)

]
+m(C2 ∪C1 ∪ Cc−7, k − 2)−

[
m(P5 ∪C2 ∪ Cc−6, k)

+m(C2 ∪C2 ∪ Cc−6, k − 1)
]
−m(C2 ∪ C1 ∪ Cc−6, k − 1)

−m(P3 ∪ C1 ∪ Cc−7, k − 2)
lemma 5

= m(C1 ∪ C1 ∪ C2 ∪ Cc−6, k − 1) +m(C1 ∪ C1 ∪Cc−6, k − 2)

+
[
m(P3 ∪ C1 ∪ Cc−7, k − 2) +m(C1 ∪C1 ∪ Cc−7, k − 3)

]
−
[
m(C1 ∪C1 ∪ C2 ∪ Cc−6, k − 1) +m(C2 ∪Cc−6, k − 2)

]
−m(P3 ∪ C1 ∪ Cc−7, k − 2)

lemma 5
= m(C1 ∪ C1 ∪ Cc−6, k − 2) +m(C1 ∪ C1 ∪ Cc−7, k − 3)

−
[
m(C1 ∪C1 ∪ Cc−6, k − 2) +m(Cc−6, k − 3)

]
lemma 5

=
[
m(C1 ∪ Cc−7, k − 3) +m(C1 ∪Cc−7, k − 4)

]
−
[
m(C1 ∪Cc−7, k − 3) +m(Cc−8, k − 4)

]
lemma 5

=
[
m(Cc−7, k − 4) +m(Cc−7, k − 5)

]
−m(Cc−8, k − 4)

lemma 5
=

[
m(C1 ∪ Cc−8, k − 4) +m(Cc−9, k − 5)

]
+m(Cc−7, k − 5)

−m(Cc−8, k − 4)
lemma 5

=
[
m(Cc−8, k − 4) +m(Cc−8, k − 5)

]
+m(Cc−9, k − 5)

+m(Cc−7, k − 5)−m(Cc−8, k − 4) > 0,

where m(Cc−9, k−5) = 0 if c = 8, and at each step the underlined terms are canceled
out. When k = 5, the final inequality is sharp. �
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We proceed to give other total orderings.

Theorem 8.

(1) T ci,1(a) ≺ T ci,3(a) ≺ · · · ≺ · · · ≺ T ci,4(a) ≺ T ci,2(a), and

(2) T c1,j(a) ≺ T c3,j(a) ≺ · · · ≺ · · · ≺ T c4,j(a) ≺ T c2,j(a).

The orderings are similar to those of theorem 4. See the explanation after that
theorem.

The proof calls for more preparation.

Lemma 9.

(1)
∣∣m(Jca, s

)
−m

(
Jca−2, s

)∣∣ > ∣∣m(Jca+1, s
)
−m

(
Jca−1, s

)∣∣,
1 6 a 6 q − 1, s ∈ Z. (8)

When s = a− 1, the inequality is sharp.

(2)
∣∣m(Jcq , s

)
−m

(
Jcq−2, s

)∣∣ > ∣∣m(Jcq , s
)
−m

(
Jcq−1, s

)∣∣, c ≡ 1(2), s ∈ Z. (9)

When s = q − 1, the inequality is sharp.

Proof. (1) By (6),∣∣m(Jca, s
)
−m

(
Jca−2, s

)∣∣
= m(Pc−2a+1, s− a+ 1) = m(Pc−2a, s− a+ 1) +m(Pc−2a−1, s− a)

= m(Pc−2a, s− a+ 1) +
∣∣m(Jca+1, s

)
−m

(
Jca−1, s

)∣∣
>
∣∣m(Jca+1, s

)
−m

(
Jca−1, s

)∣∣, 1 6 a 6 q − 1, s ∈ Z.
When s = a− 1, the inequality is sharp.

(2) By (6) and (7),∣∣m(Jcq , s
)
−m

(
Jcq−2, s

)∣∣− ∣∣m(Jcq , s
)
−m

(
Jcq−1, s

)∣∣
= m(Pc−2q+1, s− q + 1)−m(Pc−2q , s− q)

=

{−1, s = q, c ≡ 0(2),
1, s = q − 1,
0, otherwise,

> 0, c ≡ 1(2).

And when s = q − 1, the inequality is sharp. �

Lemma 10. Let

γc(a, s) = m(Pa−1 ∪ Pc−a+1, s) +m(Pa ∪ Pc−a, s),

0 6 a 6
⌊
c+ 1

2

⌋
= r, c > 0, s ∈ Z.
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Then

γc(0, s) 6 γc(2, s) 6 · · · 6 · · · 6 γc(3, s) 6 γc(1, s),

and for each of the inequalities, there is an s to make it sharp.

The ordering is similar to those of theorem 4 but in the inverse direction. See
the explanation after that theorem.

Proof. Case 1: c ≡ 0(2). In this case, r = b(c + 1)/2c = bc/2c = q. By (8) and
theorem 4 we have that, if a ≡ 1(2),

γc(a, s)− γc(a− 1, s) =m
(
Jca, s

)
−m

(
Jca−2, s

)
> m

(
Jca−1, s

)
−m

(
Jca+1, s

)
= γc(a, s)− γc(a+ 1, s) > 0.

Hence

γc(a+ 1, s)− γc(a− 1, s) =
[
γc(a, s)− γc(a− 1, s)

]
−
[
γc(a, s)− γc(a+ 1, s)

]
> 0,

1 6 a 6
⌊
c

2

⌋
− 1 = q − 1 = r − 1, s ∈ Z,

and when s = a− 1, the inequality is sharp.
If a ≡ 0(2),

γc(a− 1, s)− γc(a, s) =m
(
Jca−2, s

)
−m

(
Jca, s

)
> m

(
Jca+1, s

)
−m

(
Jca−1, s

)
= γc(a+ 1, s)− γc(a, s) > 0.

Again,

γc(a− 1, s)− γc(a+ 1, s) =
[
γc(a− 1, s)− γc(a, s)

]
−
[
γc(a+ 1, s)− γc(a, s)

]
> 0,

1 6 a 6
⌊
c

2

⌋
− 1 = q − 1, s ∈ Z,

and when s = a− 1, the inequality is sharp. In addition,

γc(r, s)− γc(r − 1, s) = m
(
Jcr , s

)
−m

(
Jcr−2, s

)
6 0 (> 0), r ≡ 0(2)

(
r ≡ 1(2)

)
,

and by (6), s = r − 1 gives sharp inequalities.
Case 2: c ≡ 1(2). In this case, r = q+ 1, c = r+ r−1, γc(r, s) = m(Jcr−1, s) +

m(Jcr−1, s). By (7),

γc(r, s)− γc(r − 1, s) =m
(
Jcr−1, s

)
−m

(
Jcr−2, s

)
= m

(
Jcq , s

)
−
(
Jcq−1, s

)
> 0 (6 0), r ≡ 1(2)

(
r ≡ 0(2)

)
.

When s = q = r − 1, the inequality is sharp.
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By (9), if r ≡ 0(2),

γc(r, s)− γc(r − 2, s) =
[
γc(r − 1, s)− γc(r − 2, s)

]
−
[
γc(r − 1, s)− γc(r, s)

]
=m

(
Jcq , s

)
−m

(
Jcq−2, s

)
−
[
m
(
Jcq−1, s

)
−m

(
Jcq , s

)]
> 0, s ∈ Z,

and when s = q − 1, the inequality is sharp. If r ≡ 1(2), by (9),

γc(r − 2, s)− γc(r, s) =
[
γc(r − 2, s)− γc(r − 1, s)

]
−
[
γc(r, s)− γc(r − 1, s)

]
=m

(
Jcq−2, s

)
−m

(
Jcq , s

)
−
[
m
(
Jcq , s

)
−m

(
Jcq−1, s

)]
> 0, s ∈ Z,

and when s = q − 1, the inequality is sharp. The rest of the argument is the same as
in case 1. �

Proof of theorem 8. Clearly, m(T̂ ci,j(a), s) = m(T̂ ck,l(a), s). On the other hand,

β1
(
T̂ ci,j(a), s

)
=

∑
δ+λ=s−2

[
m(Pi−2 ∪ Pa−i, δ) +m(Pi−1 ∪ Pa−i−1, δ)

]
×
[
m(Pj−2 ∪ Pb−j ,λ) +m(Pj−1 ∪ Pb−j−1,λ)

]
=

∑
δ+λ=s−2

γa−2(i− 1, δ)γb−2(j − 1,λ), s ∈ Z. (10)

By lemma 10, we have

β1
(
T̂ ci,1(a), s

)
6 β1

(
T̂ ci,3(a), s

)
6 · · · 6 · · · 6 β1

(
T̂ ci,4(a), s

)
6 β1

(
T̂ ci,2(a), s

)
and

β1
(
T̂ c1,j(a), s

)
6 β1

(
T̂ c3,j(a), s

)
6 · · · 6 · · · 6 β1

(
T̂ c4,j(a), s

)
6 β1

(
T̂ c2,j(a), s

)
.

Thus, by lemma 2, we get

T ci,1(a) � T ci,3(a) � · · · � · · · � T ci,4(a) � T ci,2(a)

and

T c1,j(a) � T c3,j(a) � · · · � · · · � T c4,j(a) � T c2,j(a).

The sharpness of the strict quasiorderings is derived from the fact that in (10), there
is at least one term satisfying the strict inequality relation with its corresponding term
for different i or j, which is guaranteed also by lemma 10. For instance,

γa−2(i− 1, 0)γb−2(j − 1,λ) > γa−2(i− 1, 0)γb−2(j − 3,λ),

if λ = j − 3 ≡ 0(2),
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which ensures

β1
(
T̂ ci,j(a), j − 1

)
> β1

(
T̂ ci,j−2(a), j − 1

)
, if j ≡ 1(2).

Thus, by lemma 2, T ci,j(a) � T ci,j−2(a), j ≡ 1(2). �

Theorem 11. Suppose 5 6 a < b. Then

T c1,3(a) � T c3,1(a), a ≡ 1(2),

or
T c1,3(a) ≺ T c3,1(a), a ≡ 0(2).

Proof. By (10),

β1
(
T̂ c1,3(a), s

)
=

∑
δ+λ=s−2

γa−2(0, δ)γb−2(2,λ),

β1
(
T̂ c3,1(a), s

)
=

∑
δ+λ=s−2

γa−2(2, δ)γb−2(0,λ),

β1
(
T̂ c1,3(a), s

)
− β1

(
T̂ c3,1(a), s

)
=

∑
δ+λ=s−2

[
γa−2(0, δ)γb−2(2,λ)− γa−2(2, δ)γb−2(0,λ)

]
=

∑
δ+λ=s−2

[
γa−2(0, δ)

(
γb−2(2,λ)− γb−2(0,λ)

)
−
(
γa−2(2, δ) − γa−2(0, δ)

)
γb−2(0,λ)

]
.

But

γb−2(2,λ)− γb−2(0,λ) =
[
γb−2(1,λ)− γb−2(0,λ)

]
−
[
γb−2(1,λ)− γb−2(2,λ)

]
=m

(
Jb−2

1 ,λ
)
−
[
m
(
Jb−2

0 ,λ
)
−m

(
Jb−2

2 ,λ
)]

=m(Pb−3,λ)−m(Pb−5,λ− 1)
(
by (6)

)
=m(Pb−4,λ). (11)

Likewise,

γa−2(2, δ) − γa−2(0, δ) =

{ 1, δ = 0, a = 5,
0, δ 6= 0, a = 5,
m(Pa−4, δ), a > 5,

=m(Pa−4, δ). (12)

Substituting them into the above equations, we get

β1
(
T̂ c1,3(a), s

)
− β1

(
T̂ c3,1(a), s

)
=

∑
δ+λ=s−2

[
γa−2(0, δ)m(Pb−4,λ)−m(Pa−4, δ)γb−2(0, δ)

]
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=
∑

δ+λ=s−2

[
m(Pa−2, δ)m(Pb−4, δ) −m(Pa−4, δ)m(Pb−2,λ)

]
= m(Pa−2 ∪ Pb−4, s− 2)−m

(
Jc−6
a−4, s− 2

)
=

{
m(Jc−6

a−2, s− 2)−m(Jc−6
a−4, s− 2), b > a+ 2,

m(Jc−6
a−3, s− 2)−m(Jc−6

a−4, s− 2), b = a+ 1,{
6 0, a ≡ 0(2),

by (6) and (7).
> 0, a ≡ 1(2),

And there obviously exists an s for each inequality to be sharp. The theorem holds
by lemma 2. �

Theorem 12. When b > a = 4, T c1,3(4) ≺ T c2,1(4).

Proof. By (10),

β1
(
T̂ c1,3(4), s

)
=

∑
δ+λ=s−2

γ2(0, δ)γb−2(2,λ),

β1
(
T̂ c2,1(4), s

)
=

∑
δ+λ=s−2

γ2(1, δ)γb−2(0,λ).

By (11) and (12),

β1
(
T̂ c1,3(4), s

)
− β1

(
T̂ c2,1(4), s

)
=

∑
δ+λ=s−2

[
γ2(0, δ)γb−2(2,λ)− γ2(1, δ)γb−2(0,λ)

]
=

∑
δ+λ=s−2

[
γ2(0, δ)

(
γb−2(2,λ)− γb−2(0,λ)

)
−
(
γ2(1, δ) − γ2(0, δ)

)
γb−2(0,λ)

]
=

∑
δ+λ=s−2

[
γ2(0, δ)m(Pb−4,λ)−m

(
J2

1 , δ
)
m
(
Jb−2

0 ,λ
)]

=
∑

δ+λ=s−2

m(P2, δ)m(Pb−4,λ)−
∑

δ+λ=s−2

m(P1 ∪ P1, δ)m(Pb−2,λ)

=

{
m(Jb−2

2 , s− 2)−m(Jb−2
0 , s− 2), b > 6,

m(J3
1 , s− 2)−m(J3

0 , s− 2), b = 5,

6 0.

When s = 3, the inequality is sharp. �

Theorem 13. When b > a = 3, T c2,l(3) � T c1,j(3), 1 6 j, l 6 b(b+ 1)/2c.
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Proof.

β1
(
T̂ c2,l(3), s

)
=

∑
δ+λ=s−2

γ1(1, δ)γb−2(l − 1,λ)

=
∑

δ+λ=s−2

[
m(P1 ∪ P0, δ) +m(P1 ∪ P0, δ)

]
γb−2(l − 1,λ)

>
∑

δ+λ=s−2

[
m(P1, δ) +m(P1, δ)

]
γb−2(0,λ)

=
∑

δ+λ=s−2

[
m(P1, δ) +m(P1, δ)

]
m
(
Jb−2

0 ,λ
)

>
∑

δ+λ=s−2

m
(
J1

0 , δ
)[
m
(
Jb−2

0 ,λ
)

+m
(
Jb−2

1 ,λ
)]

=
∑

δ+λ=s−2

γ1(0, δ)γb−2(1,λ) >
∑

δ+λ=s−2

γ1(0, δ)γb−2(j − 1,λ)

= β1
(
T̂ c1,j(3), s

)
.

And there is at least an s that makes one of the above inequalities sharp. Thus, by
lemma 2, T c2,l � T c1,j(3). �

Theorem 14. Suppose c > 10, then T c1,i(3) ≺ T c3,1(5), 3 6 i 6 b(c− 2)/2c.

Proof. First of all, Jc3 ≺ Jc5 . Then

β1
(
T̂ c1,i(3), s

)
=

∑
δ+λ=s−2

γ1(0, δ)γc−5(i− 1,λ) = γc−5(i− 1, s− 2)

= m(Pi−1 ∪ Pc−i−4, s− 2) +m(Pi−2 ∪ Pc−i−3, s− 2)
lemma 6

=
[
m(Pc−6, s− 2) +m(Pi−3 ∪ Pc−i−6, s− 4)

]
+
[
m(Pc−6, s− 2) +m(Pi−4 ∪ Pc−i−5, s− 4)

]
,

β1
(
T̂ c3,1(5), s

)
=

∑
δ+λ=s−2

γ3(2, δ)γb−2(0,λ)

=
∑

δ+λ=s−2

[
m(P1 ∪ P2, δ) +m(P1 ∪ P2, δ)

]
m(P0 ∪ Pb−2,λ)

=
∑

δ+λ=s−2

[
m(P2, δ)m(Pb−2,λ) +m(P2, δ)m(Pb−2,λ)

]
= m(P2 ∪ Pb−2, s− 2) +m(P2 ∪ Pb−2, s− 2)

= m(P2 ∪ Pc−7, s− 2) +m(P2 ∪ Pc−7, s− 2)
lemma 6

=
[
m(Pc−6, s− 2) +m(Pc−9, s− 4)

]
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+
[
m(Pc−6, s− 2) +m(Pc−9, s− 4)

]
> β1

(
T̂ c1,i(3), s

)
.

By lemma 2, T c1,i(3) ≺ T c3,1(5). �

Theorem 15. Under the same condition as in the previous theorem, T c1,2(3) � T c3,1(5).

Proof.

m
(
T c1,2(3), k

)
−
(
T c3,1(5), k

)
= m

(
, k

)
−m

 , k


lemma 5

= m
(

∪Cc−6, k
)

+m
(

∪Cc−7, k − 1
)

−m(C5 ∪Cc−6, k)−m
(

∪Cc−7, k − 1
)

lemma 5
=

[
m(C3 ∪ C2 ∪Cc−6, k) +m(P5 ∪ C1 ∪ Cc−6, k − 1)

]
+
[
m(C2 ∪ C2 ∪ Cc−7, k − 1) +m(P3 ∪ C1 ∪ Cc−7, k − 2)

]
−
[
m(C3 ∪C2 ∪ Cc−6, k) +m(C2 ∪C1 ∪ Cc−6, k − 1)

]
−
[
m
(

∪C2 ∪Cc−7, k − 1
)

+m(C2 ∪ C1 ∪Cc−7, k − 2)
]

lemma 5
=

[
m(C2 ∪ C1 ∪Cc−6, k − 1) +m(P3 ∪ C1 ∪Cc−6, k − 2)

]
+m(C2 ∪C2 ∪ Cc−7, k − 1) +m(P3 ∪C1 ∪ Cc−7, k − 2)

−m(C1 ∪C2 ∪ Cc−6, k − 1)

−
[
(C2 ∪C2 ∪ Cc−7, k − 1) +m(C2 ∪ C1 ∪Cc−7, k − 2)

]
−
[
m(P3 ∪ C1 ∪ Cc−7, k − 2) +m(C1 ∪C1 ∪ Cc−7, k − 3)

]
lemma 5

=
[
m(P3 ∪C1 ∪ C1 ∪ Cc−7, k − 2) +m(P3 ∪ C1 ∪ Cc−8, k − 3)

]
−
[
m(C1 ∪ C1 ∪ C1 ∪ Cc−7, k − 2) +m(C1 ∪ Cc−7, k − 3)

]
−m(C1 ∪C1 ∪ Cc−7, k − 7)

lemma 5
=

[
m(C1 ∪ C1 ∪C1 ∪ Cc−7, k − 2) +m(C1 ∪ C1 ∪Cc−7, k − 3)

]
+m(P3 ∪ C1 ∪ Cc−8, k − 3)−m(C1 ∪C1 ∪ C1 ∪ Cc−7, k − 2)

−m(C1 ∪Cc−7, k − 3)−m(C1 ∪ C1 ∪ Cc−7, k − 3)
lemma 6

=
[
m(C1 ∪ Cc−7, k − 3) +m(C1 ∪Cc−9, k − 5) +m(C1 ∪ Cc−10, k − 5)

]
−m(C1 ∪Cc−7, k − 3)

= m(C1 ∪Cc−9, k − 5) +m(C1 ∪ Cc−10, k − 5) > 0.

In the above equations the underlined terms at each step are canceled out. When
k = 5, we get the strict inequality. �
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Theorem 16. Suppose c > 14, then T c3,1(5) ≺ T c3,1(2t+ 1), t > 3.

Proof. By theorem 4, Jc5 ≺ Jc2t+1.

β1
(
T̂ c3,1(5), s

)
= m(P2 ∪ Pc−7, s− 2) +m(P2 ∪ Pc−7, s− 2)

lemma 6
=

[
m(Pc−6, s− 2) +m(Pc−9, s− 4)

]
+m(P2 ∪ Pc−7, s− 2)

lemma 5
= m(Pc−6, s− 2) +

[
m(P2t−4 ∪ Pc−2t−5, s− 4)

+m(P2t−5 ∪ Pc−2t−6, s− 5)
]

+m(P2 ∪ Pc−7, s− 2),

β1
(
T̂ c3,1(2t+ 1), s

)
=

∑
δ+λ=s−2

γ2t−1(2, δ)γc−2t−3(0,λ)

=
∑

δ+λ=s−2

[
m(P1 ∪ P2t−2, δ)

+m(P2 ∪ P2t−3, δ)
]
m(Pc−2t−3,λ)

= m(P2t−2 ∪ Pc−2t−3, s− 2)

+m(P2 ∪ P2t−3 ∪ Pc−2t−3, s− 2)
lemma 6

=
[
m(Pc−6, s− 2) +m(P2t−4 ∪ Pc−2t−5, s− 4)

+m(P2 ∪ P2t−3 ∪ Pc−2t−3, s− 2)
]

lemma 6
= m(Pc−6, s− 2) +m(P2t−4 ∪ Pc−2t−5, s− 4)

+
[
m(P2 ∪ Pc−7, s− 2) +m(P2 ∪ P2t−5 ∪ Pc−2t−5, s− 4)

]
lemma 5

= m(Pc−6, s− 2) +m(P2t−4 ∪ Pc−2t−5, s− 4)

+m(P2 ∪ Pc−7, s− 2) +
[
m(P2t−5 ∪ Pc−2t−5, s− 4)

+m(P2t−5 ∪ Pc−2t−5, s− 5)
]

lemma 5
= m(Pc−6, s− 2) +m(P2t−4 ∪ Pc−2t−5, s− 4)

+m(P2 ∪ Pc−7, s− 2) +m(P2t−5 ∪ Pc−2t−5, s− 4)

+
[
m(P2t−5 ∪ Pc−2t−6, s− 5)

+m(P2t−5 ∪ Pc−2t−7, s− 6)
]
.

β1
(
T̂ c3,1(2t+ 1), s

)
− β1

(
T̂ c3,1(5), s

)
= m(P2t−5 ∪ Pc−2t−5, s− 4) +m(P2t−5 ∪ Pc−2t−7, s− 6) > 0.

As a result of lemma 2, T c3,1(5) ≺ T c3,1(2t+ 1). �

Theorem 17. When c > 10, T c1,3(5) ≺ T c1,3(2t), t > 1.
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Proof. By theorem 4, Jc5 ≺ Jc2t.

β1
(
T̂ c1,3(5), s

)
=

∑
δ+λ=s−2

γ3(0, δ)γb−2(2,λ)

=
∑

δ+λ=s−2

m(P3, δ)
[
m(P1 ∪ Pc−8,λ) +m(P2 ∪ Pc−9,λ)

]
=m(P3 ∪ Pc−8, s− 2) +m(P3 ∪ P2 ∪ Pc−9, s− 2),

and likewise,

β1
(
T̂ c1,3(2t), s

)
= m(P2t−2 ∪ Pc−2t−3, s− 2) +m(P2t−2 ∪ P2 ∪ Pc−2t−4, s− 2).

Because 2t 6 c/2, we have t 6 c/4. And if 2t−2 > c−2t−3 or 2t−2 > c−2t−4,
it implies 4t 6 c < 4t+ 1 or 4t+ 2, which holds only when c > 12.

Case 1: 10 6 c < 12. In this case, t 6 c/4 < 3, 2t − 2 6 c − 2t − 3, and
2t− 2 6 c− 2t− 4, by the above argument. Thus

β1
(
T̂ c1,3(2t), s

)
=m(P2t−2 ∪ Pc−2t−3, s− 2) +m(P2t−2 ∪ P2 ∪ Pc−2t−4, s− 2)

=m
(
Jc−5

2t−2, s− 2
)

+m
(
P2 ∪ Jc−6

2t−2, s− 2
)

>m(P3 ∪ Pc−8, s− 2) +m(P2 ∪ P3 ∪ Pc−9, s− 2)

(c− 8, c− 9 > 0, 2t− 2 6 2)

= β1
(
T̂ c1,3(5), s

)
.

Case 2: c > 12. In this case,

β1
(
T̂ c1,3(5), s

)
=m(P3 ∪ Pc−8, s− 2) +m(P3 ∪ P2 ∪ Pc−9, s− 2)

=m
(
Jc−5

3 , s− 2
)

+m
(
Jc−6

3 ∪ P2, s− 2
)

(c− 8, c− 9 > 3)

6m(P2t−2 ∪ Pc−2t−3, s− 2) +m(P2 ∪ P2t−2 ∪ Pc−2t−4, s− 2)

= β1
(
T̂ c1,3(2t), s

)
,

for c−2t > 12−2t > 12−(c−2t) implies c−2t > 6; hence c−2t−3 > c−2t−4 > 2,
while P2t−2 ∪ Pc−2t−3 is either Jc−5

2t−2 or Jc−5
c−2t−3, and P2t−2 ∪ Pc−2t−4 is either Jc−6

2t−2

or Jc−6
c−2t−4. �

Summing the above theorems up, the reader can deduce that T c3,1(5) has the
smallest energy among trees of two-component capped graphs after T c1,1(i), 1 6 i 6
bc/2c and T c1,j(3), 3 6 j 6 b(c − 2)/2c.

4. The multi-component capped graphs and central results

Theorem 18. Suppose n > 18. If c(T̂ ) > 3, then

T � T c3,1(5), c =
n

2
+ 1.
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Proof. Concatenate T̂ into T̂ ∗ so that c(T̂ ∗) = 3 if c(T̂ ) > 3. It is feasible because
T̂ together with the linking edges E forms a “tree structure” if we regard the paths as
vertices. And the tree structure has at least two pendant “vertices”. If we concatenate
the two “vertices”, paths of T̂ actually, the number of the connected components
decreases. By lemma 3, T � T ∗. Without loss of generality, we just consider T̂ with
3 connected components.

Suppose T̂ = Pf∪Pg∪Ph, f , g,h > 2, f+g+h = n/2+2 = c+1. And let Pf =

u1u2 · · ·uf , Pg = v1v2 · · · vg, Ph = w1w2 · · ·wh, and T = T (T̂ , {uivj , vkwl}), 1 6
i 6 b(f + 1)/2c, 1 6 j < k 6 g, j 6 g − k + 1, 1 6 l 6 b(h+ 1)/2c.

Case 1: One of i, j, l is not 1, or k 6= g, that is, one of i, j, k, l is the subscript of
an inner vertex of Pf ,Pg ,Ph. Without loss of generality, we say j is an inner vertex
of Pg.

(i) g > bc/2c. Then f 6 bc/2c. If f 6= 3, by lemma 3,

T � T (Pf ∪ Pg+h−1,uivj) = T (Pf ∪ Pc−f ,uivj) � T (Pf ∪ Pc−f ,u1vj)

= T c1,j(f ) � T c1,3(f ) (j 6= 1){
� T c3,1(f ) � T c3,1(5), f ≡ 1(2) (theorems 11, 16),

� T c1,3(5) � T c3,1(5), f ≡ 0(2) (theorem 17).

If f = 3, then (3 6= f + h− 1 6 bc/2c)

T � T (Pg ∪ Pf+h−1,uivj) = T (Pf+h−1 ∪ Pc−f−h+1,uivj)

� T (Pf+h−1 ∪ Pc−f−h+1,u1vj) � T (Pf+h−1 ∪ Pc−f−h+1,u1v3)

= T c1,3(f + h− 1){
� T c3,1(f + h− 1) � T c3,1(5), f + h− 1 ≡ 1(2) (theorems 11, 16),

� T c1,3(5) � T c3,1(5), f + h− 1 ≡ 0(2) (theorem 17).

(ii) g 6 bc/2c. Then, if g > 5,

T � T (Pf+h−1 ∪ Pg,uivj) = T (Pg ∪ Pc−g, vjui) = T cj,i(g) � T cj,1(g) � T c3,1(g){
� T c1,3(g) � T c1,3(5) � T c3,1(5), g ≡ 0(2) (theorems 11, 17),

� T c3,1(5), g ≡ 1(2) (theorem 16).

If g = 4, then

T � T (Pf+h−1 ∪ Pg,uivj) = T (Pg ∪ Pc−g, vjui) = T cj,i(g) � T cj,1(g)

= T c2,1(4) � T c1,3(4) � T c1,3(5) � T c3,1(5) (theorems 11, 12, 17).

If g = 3, then j = 2:

T � T (Pg ∪ Pc−g, vjui) = T cj,i(g) � T cj,1(g) = T c2,1(g) = T c2,1(3) � T c1,2(3)

� T c3,1(5) (theorem 15).
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Case 2: i = j = l = 1, k = g. To begin with, we compare m(T̂ , s) and
m(T̂ c3,1(5), s):

m
(
T̂ c3,1(5), s

)
= m(P5 ∪ Pc−5, s) = m

(
Jc5 , s

)
.

For T̂ , there are at least two of f , g,h which are no more than bc/2c, say f and g. If
one of them, say f , is not three, then

m
(
T̂ , s

)
= m(Pf∪Pg∪Ph, s) > m(Pf∪Pg+h−1, s) > m(P5∪Pc−5, s) = m

(
T̂ c3,1(5), s

)
.

If f = g = 3, then

m
(
T̂ , s

)
> m(Pf+g−1 ∪ Ph, s) = m(P5 ∪ Pc−5, s) = m

(
T̂ c3,1(5), s

)
.

In any case, m(T̂ , s) > m(T̂ c3,1(5), s) and m(T̂ , 2) > m(T̂ c3,1(5), 2). Next we compare

β1(T̂ , s) and β1(T̂ c3,1(5), s):

β1
(
T̂ c3,1(5), s

)
=m(P2 ∪ Pc−7, s− 2) +m(P2 ∪ Pc−7, s− 2),

β1
(
T̂ , s

)
=m(Pf−2 ∪ Pc−f−2, s− 2) +m(Pc−h−2 ∪ Ph−2, s− 2)

>m(Pc−5, s− 2) +m(Pc−5, s− 2)

=m
(
Jc−5

0 , s− 2
)

+m
(
Jc−5

0 , s− 2
)

>m
(
Jc−5

2 , s− 2
)

+m
(
Jc−5

2 , s− 2
)

=m(P2 ∪ Pc−7, s− 2) +m(P2 ∪ Pc−7, s− 2)

= β1
(
T̂ c3,1(5), s

)
.

When s = 3, i.e., s − 2 = 2 − 1, by (6), m(Jc−5
0 , s − 2) > m(Jc−5

2 , s − 2); hence
β1(T̂ , s) > β1(T̂ c3,1(5), s). By lemma 2, T � T c3,1(5). �

In summary, we have the following central result.

Theorem 19. For c > 10,

T c1,1(1)≺ T c1,1(3) ≺ · · · ≺ · · · ≺ · · · ≺ T c1,1(4) ≺ T c1,1(2)

≺ T c1,3(3) ≺ T c1,5(3) ≺ · · · ≺ · · · ≺ · · · ≺ T c1,6(3) ≺ T c1,4(3)

≺ T c3,1(5) ≺ T ,

where T is any tree in Ψn not in the previous series.

For this ordering please refer to the explanation after theorem 4.
Consequently, we get altogether 2b(1/2)(n/2 + 1)c− 2 or, roughly, n/2− 1 trees

preceding the rest in the class Ψn in the increasing order of their energies.
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5. Complementations

The last theorem in section 3 has the restriction of c > 10. Now we will
complement the theorem to the extent of c > 7, that is, n > 12. For the case n 6 10,
there are existent total orderings. We note that essentially the restriction applies only to
theorems 7, 14, 15, 17 and 18. The following theorems correspond to these theorems,
respectively, for the cases of c = 7, 8, 9.

Theorem 20. T 7
1,1(2) ≺ T 7

1,2(3).

Proof. The difference of the numbers of the k-matchings is

m
(
T 7

1,2(3), k
)
−m

(
T 7

1,1(2), k
)

= m

(
, k

)
−m

(
, k
)

= m
(

∪C2, k
)

+m
(

∪C1 ∪ C1, k − 1
)

−m
(

∪C2, k
)
−m(P6 ∪ C1, k − 1)

= m
(

∪ C1 ∪ C1, k − 1
)
−m(P6 ∪ C1, k − 1)

=
[
m(C2 ∪ C1 ∪ C1, k − 1) +m(C1 ∪ C1 ∪C1, k − 2)

]
−
[
m(C2 ∪ C1 ∪ C1, k − 1) +m(P3 ∪C1, k − 2)

]
= m(C1 ∪ C1 ∪ C1, k − 2)−m(P3 ∪C1, k − 2)

lemma 6
=

[
m(P3 ∪ C1, k − 2) +m(C1, k − 4)

]
−m(P3 ∪ C1, k − 2)

= m(C1, k − 4) > 0.

When k = 4, the inequality is sharp. �

Theorem 21. T 9
1,3(3) ≺ T 9

1,3(4), T 8
1,3(3) ≺ T 8

1,2(3) ≺ T 8
1,2(4), T 7

1,2(3) ≺ T 7
1,3(2).

Proof. Theorem 4 implies that β0(T̂ 9
1,3(3), s) < β0(T̂ 9

1,3(4), s), β0(T̂ 8
1,2(3), s) <

β0(T̂ 8
1,2(4), s), and β0(T̂ 7

1,2(3), s) < β0(T̂ 7
1,3(2), s). On the other hand,

β1
(
T̂ 9

1,3(4), s
)
− β1

(
T̂ 9

1,3(3), s
)

=
[
m(C1 ∪ C1, s− 2) +m(C1 ∪ C1, s− 2)

]
−
[
m(P3, s− 2) +m(C1 ∪ C1, s− 2)

]
= m(C1 ∪ C1, s− 2)−m(P3, s− 2)

lemma 6
=

[
m(P3, s− 2) +m(∅, s− 4)

]
−m(P3, s− 2) = m(∅, s− 4) > 0,

β1
(
T̂ 8

1,2(4), s
)
− β1

(
T̂ 8

1,2(3), s
)

=
[
m(C1 ∪ C1, s− 2) +m(C1, s− 2)

]
−
[
m(P3, s− 2) +m(C1, s− 2)

]



H. Li / On minimal energy ordering of acyclic conjugated molecules 165

= m(C1 ∪ C1, s− 2)−m(P3, s− 2)
lemma 6

=
[
m(P3, s− 2) +m(∅, s− 4)

]
−m(P3, s− 2) = m(∅, s− 4) > 0,

β1
(
T̂ 7

1,3(2), s
)
− β1

(
T̂ 7

1,2(3), s
)

= 2m(C1, s− 2)−
[
m(C1, s− 2) +m(∅, s− 2)

]
= m(C1, s− 2)−m(∅, s− 2) > 0.

By lemma 2, we are done. �

Theorem 22. T 9
1,3(4) ≺ T 9

1,2(3).

Proof. For we have

m
(
T 9

1,2(3), k
)
−m

(
T 9

1,3(4), k
)

= m

(
, k

)
−m

(
, k

)
= m

(
∪C3, k

)
+m

(
∪C2, k − 1

)
−m(C5 ∪ C3, k)−m

(
∪C2, k − 1

)
=
[
m
(

∪C3, k
)

+m
(

∪C3, k − 1
)]

+
[
m(C2 ∪ C2 ∪ C2, k − 1) +m(P3 ∪C1 ∪ C2, k − 2)

]
−
[
m
(

∪C3, k
)

+m(C2 ∪ C2 ∪ C3, k − 1)
]

−
[
m
(

∪C2 ∪ C2, k − 1
)

+m(C1 ∪C2 ∪ C2, k − 2)
]

= m
(

∪C3, k − 1
)

+m(C2 ∪ C2 ∪ C2, k − 1)

+m(P3 ∪C1 ∪ C2, k − 2)−m(C2 ∪ C2 ∪ C3, k − 1)

−m
(

∪C2 ∪ C2, k − 1
)
−m(C1 ∪C2 ∪ C2, k − 2)

=
[
m(C2 ∪ C2 ∪C3, k − 1) +m(P3 ∪ C1 ∪ C3, k − 2)

]
+m(C2 ∪ C2 ∪C2, k − 1) +m(P3 ∪ C1 ∪ C2, k − 2)

−m(C2 ∪ C2 ∪C3, k − 1)−
[
m(C2 ∪ C2 ∪ C2, k − 1)

+m(C1 ∪ C2 ∪C2, k − 2)
]
−m(C1 ∪ C2 ∪C2, k − 2)

= m(P3 ∪C1 ∪ C3, k − 2) +m(P3 ∪ C1 ∪ C2, k − 2)

−m(C1 ∪ C2 ∪C2, k − 2)−m(C1 ∪ C2 ∪ C2, k − 2)

=
[
m(P3 ∪ C1 ∪ C1 ∪ C2, k − 2) +m(P3 ∪ C1 ∪C1, k − 3)

]
+m(P3 ∪C1 ∪ C2, k − 2)−m(C1 ∪ C2 ∪ C2, k − 2)

−
[
m(C1 ∪ P3 ∪ C2, k − 2) +m(C1 ∪C1 ∪ C2, k − 3)

]
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lemma 6
=

[
m(C2 ∪ C1 ∪ C2, k − 2) +m(C2 ∪C1, k − 4)

]
+m(P3 ∪ C1 ∪ C1, k − 3) +m(P3 ∪C1 ∪ C2, k − 2)

−m(C1 ∪ C2 ∪ C2, k − 2)−m(C1 ∪ P3 ∪C2, k − 2)

−
[
m(C1 ∪ C1 ∪ P3, k − 3) +m(C1 ∪ C1 ∪C1, k − 4)

]
= m(C2 ∪C1, k − 4)−m(C1 ∪ C1 ∪ C1, k − 4)

=
[
m(C1 ∪C1 ∪ C1, k − 4) +m(C1, k − 5)

]
−m(C1 ∪ C1 ∪ C1, k − 4)

= m(C1, k − 5) > 0.

When k = 5, the inequality is sharp. �

Theorem 23. T 9
1,3(4) ≺ T 9

1,3(2), T 8
1,2(4) ≺ T 8

1,3(2).

Proof. By theorem 4, β0(T̂ 9
1,3(4), s) < β0(T̂ 9

1,3(2), s) and β0(T̂ 8
1,2(4), s) < β0(T̂ 8

1,3(2), s).
In addition,

β1
(
T̂ 9

1,3(2), s
)
− β1

(
T̂ 9

1,3(4), s
)

=
[
m(P4, s− 2) +m(P2 ∪ P3, s− 2)

]
− 2m(P2 ∪ P2, s− 2)

=
[
m(P2 ∪ P2, s− 2) +m(P1 ∪ P1, s− 3)

]
+
[
m(P2 ∪ P2, s− 2)

+m(P2 ∪ P1, s− 3)
]
− 2m(P2 ∪ P2, s− 2)

= m(∅, s− 3) +m(P2, s− 3) > 0,

β1
(
T̂ 8

1,3(2), s
)
− β1

(
T̂ 8

1,2(4), s
)

=
[
m(P3, s− 2) +m(P2 ∪ P2, s− 2)

]
−
[
m(P2 ∪ P2, s− 2) +m(P2, s− 2)

]
= m(P3, s− 2)−m(P2, s− 2) > 0.

By lemma 2, we are done. �

Theorem 24. If c(T̂ ) > 3, then T � T 9
1,3(4) (c = 9), T � T 8

1,2(3) (c = 8), T �
T 7

1,2(3) (c = 7).

Proof. Case 1: One of i, j, k is not 1, or k 6= g. Without loss of generality, we say
j is an inner vertex of Pg .

(i) g > bc/2c. Then, if f 6= 3, by theorem 23,

T � T (Pf ∪ Pg+h−1,uivj) = T ci,j(f ) � T c1,j(f ) �


T c1,3(4), c = 9,
T c1,2(4) � T 8

1,2(3), c = 8,
T c1,3(2) � T 7

1,2(3), c = 7.
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If f = 3, then f + h− 1 6= 3; hence

T � T (Pf+h−1 ∪ Pc−(g+h−1),uivj ) �


T c1,3(4), c = 9,
T c1,2(4) � T 8

1,2(3), c = 8,
T c1,3(2) � T 7

1,2(3), c = 7.

(ii) g 6 bc/2c. In this case, g = 3, 4, j = 2. If g = 4, by theorem 12 (in the
case c = 9),

T � T (Pf+h−1 ∪ Pg,uivj) = T (Pg ∪ Pc−g, vjui) = T cj,i(4) � T cj,1(4)

�
{
T c1,3(4), c = 9,
T c1,2(4) � T 8

1,2(3), c = 8.

If g = 3, then by theorem 22 (c = 9),

T � T (Pg ∪ Pc−g, vjui) � T c2,1(g) = T c2,1(3) �


T c1,2(3) � T c1,3(4), c = 9,
T c1,2(3), c = 8,
T c1,2(3), c = 7.

Case 2: i = j = l = 1, k = g. For T̂ , there are at least two of f , g,h which do
not exceed bc/2c, say f and g. If one of them, say f , is not three, then

T̂ = Pf ∪ Pg ∪ Ph � Pf ∪ Pg+h−1 = Jcf �


Jc4 , c = 9,
Jc3 , c = 8,
Jc2 , c = 7.

If f = g = 3, then

T̂ = Pf ∪ Pg ∪ Ph � Pf+g−1 ∪ Ph = P5 ∪ Ph =


Jc4 , c = 9,
Jc3 , c = 8,
Jc2 , c = 7.

On the other hand,

β1
(
T̂ , s

)
=m(Pf−2 ∪ Pc−f−2, s− 2) +m(Pc−h−2 ∪ Ph−2, s− 2)

> 2m(Pc−5, s− 2) >


β1
(
T̂ c1,3(4), s

)
, c = 9,

β1
(
T̂ c1,2(3), s

)
, c = 8,

β1
(
T̂ c1,3(2), s

)
, c = 7.

Hence, by lemma 2,

T �


T c1,3(4), c = 9,
T c1,2(3) � T 8

1,2(3), c = 8,
T c1,3(2) � T 7

1,2(3), c = 7.
�

In the final analysis, we get
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Theorem 25.

T 7
1,1(1) ≺ T 7

1,1(3) ≺ T 7
1,1(2) ≺ T 7

1,2(3) ≺ T ,

T 8
1,1(1) ≺ T 8

1,1(3) ≺ T 8
1,1(4) ≺ T 8

1,1(2) ≺ T 8
1,3(3) ≺ T 8

1,2(3) ≺ T ,

T 9
1,1(1) ≺ T 9

1,1(3) ≺ T 9
1,1(4) ≺ T 9

1,1(2) ≺ T 9
1,3(3) ≺ T 9

1,3(4) ≺ T.

Remark. Another tree has been added to the series in theorem 19, that is,

Theorem 26. For c > 11 (n > 20),

T c1,1(1)≺ T c1,1(3) ≺ · · · ≺ · · · ≺ · · · ≺ T c1,1(4) ≺ T c1,1(2)

≺ T c1,3(3) ≺ T c1,5(3) ≺ · · · ≺ · · · ≺ · · · ≺ T c1,6(3) ≺ T c1,4(3)

≺ T c3,1(5) ≺ T c1,3(5) ≺ T ,

where T is any tree in Ψn not in the previous series.

And

Theorem 27.

T 7
1,1(1) ≺ T 7

1,1(3) ≺ T 7
1,1(2) ≺ T 7

1,2(3) ≺ T 7
2,1(3) ≺ T 7

1,3(2) ≺ T ,

T 8
1,1(1) ≺ T 8

1,1(3) ≺ T 8
1,1(4) ≺ T 8

1,1(2) ≺ T 8
1,3(3) ≺ T 8

1,2(3) ≺ T 8
1,2(4) ≺ T ,

T 9
1,1(1) ≺ T 9

1,1(3) ≺ T 9
1,1(4) ≺ T 9

1,1(2) ≺ T 9
1,3(3) ≺ T 9

1,3(4) ≺ T 9
1,2(3) ≺ T ,

T 10
1,1(1) ≺ T 10

1,1(3) ≺ T 10
1,1(5) ≺ T 10

1,1(4) ≺ T 10
1,1(2) ≺ T 10

1,3(3) ≺ T 10
1,4(3) ≺ T 10

3,1(5)

≺ T 10
1,3(4) ≺ T.

On balance, we get altogether 2b(1/2)(n/2 + 1)c − 1 or, roughly, n/2 trees
preceding the rest in the class Ψn in the increasing order of their energies.
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